Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Viruses ; 15(5)2023 04 24.
Article in English | MEDLINE | ID: covidwho-20241085

ABSTRACT

Qualitative SARS-CoV-2 antigen assays based on immunochromatography are useful for mass diagnosis of COVID-19, even though their sensitivity is poor in comparison with RT-PCR assays. In addition, quantitative assays could improve antigenic test performance and allow testing with different specimens. Using quantitative assays, we tested 26 patients for viral RNA and N-antigen in respiratory samples, plasma and urine. This allowed us to compare the kinetics between the three compartments and to compare RNA and antigen concentrations in each. Our results showed the presence of N-antigen in respiratory (15/15, 100%), plasma (26/59, 44%) and urine (14/54, 28.9%) samples, whereas RNA was only detected in respiratory (15/15, 100%) and plasma (12/60, 20%) samples. We detected N-antigen in urine and plasma samples until the day 9 and day 13 post-inclusion, respectively. The antigen concentration was found to correlate with RNA levels in respiratory (p < 0.001) and plasma samples (p < 0.001). Finally, urinary antigen levels correlated with plasma levels (p < 0.001). Urine N-antigen detection could be part of the strategy for the late diagnosis and prognostic evaluation of COVID-19, given the ease and painlessness of sampling and the duration of antigen excretion in this biological compartment.


Subject(s)
Blood Group Antigens , COVID-19 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Kinetics , Respiratory System , RNA, Viral/genetics , Sensitivity and Specificity
2.
Clin Microbiol Infect ; 29(6): 734-743, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2177753

ABSTRACT

OBJECTIVES: We aimed at assessing the efficacy and safety on antibiotic exposure of a strategy combining a respiratory multiplex PCR (mPCR) with enlarged panel and daily procalcitonin (PCT) measurements, as compared with a conventional strategy, in adult patients who were critically ill with laboratory-confirmed SARS-CoV-2 pneumonia. METHODS: This multicentre, parallel-group, open-label, randomized controlled trial enrolled patients admitted to 13 intensive care units (ICUs) in France. Patients were assigned (1:1) to the control strategy, in which antibiotic streamlining remained at the discretion of the physicians, or interventional strategy, consisting of using mPCR and daily PCT measurements within the first 7 days of randomization to streamline initial antibiotic therapy, with antibiotic continuation encouraged when PCT was >1 ng/mL and discouraged if < 1 ng/mL or decreased by 80% from baseline. All patients underwent conventional microbiological tests and cultures. The primary end point was antibiotic-free days at day 28. RESULTS: Between April 20th and November 23rd 2020, 194 patients were randomized, of whom 191 were retained in the intention-to-treat analysis. Respiratory bacterial co-infection was detected in 48.4% (45/93) and 21.4% (21/98) in the interventional and control group, respectively. The number of antibiotic-free days was 12.0 (0.0; 25.0) and 14.0 (0.0; 24.0) days, respectively (difference, -2.0, (95% CI, -10.6 to 6.6), p=0.89). Superinfection rates were high (51.6% and 48.5%, respectively). Mortality rates and ICU lengths of stay did not differ between groups. DISCUSSION: In severe SARS-CoV-2 pneumonia, the mPCR/PCT algorithm strategy did not affect 28-day antibiotics exposure nor the major clinical outcomes, as compared with routine practice.


Subject(s)
Bacterial Infections , COVID-19 , Respiratory Tract Infections , Adult , Humans , SARS-CoV-2/genetics , Procalcitonin/therapeutic use , COVID-19/diagnosis , Anti-Bacterial Agents/therapeutic use , Multiplex Polymerase Chain Reaction , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Bacterial Infections/drug therapy , Treatment Outcome , COVID-19 Testing
3.
Trials ; 23(1): 798, 2022 Sep 22.
Article in English | MEDLINE | ID: covidwho-2053951

ABSTRACT

BACKGROUND: Fluid overload is associated with worse outcome in critically ill patients requiring continuous renal replacement therapy (CRRT). Net ultrafiltration (UFNET) allows precise control of the fluid removal but is frequently ceased due to hemodynamic instability episodes. However, approximately 50% of the hemodynamic instability episodes in ICU patients treated with CRRT are not associated with preload dependence (i.e., are not related to a decrease in cardiac preload), suggesting that volume removal is not responsible for these episodes of hemodynamic impairment. The use of advanced hemodynamic monitoring, comprising continuous cardiac output monitoring to repeatedly assess preload dependency, could allow securing UFNET to allow fluid balance control and prevent fluid overload. METHODS: The GO NEUTRAL trial is a multicenter, open-labeled, randomized, controlled, superiority trial with parallel groups and balanced randomization with a 1:1 ratio. The trial will enroll adult patients with acute circulatory failure treated with vasopressors and severe acute kidney injury requiring CRRT who already have been equipped with a continuous cardiac output monitoring device. After informed consent, patients will be randomized into two groups. The control group will receive protocolized fluid removal with an UFNET rate set to 0-25 ml h-1 between inclusion and H72 of inclusion. The intervention group will be treated with an UFNET rate set on the CRRT of at least 100 ml h-1 between inclusion and H72 of inclusion if hemodynamically tolerated based on a protocolized hemodynamic protocol aiming to adjust UFNET based on cardiac output, arterial lactate concentration, and preload dependence assessment by postural maneuvers, performed regularly during nursing rounds, and in case of a hemodynamic instability episode. The primary outcome of the study will be the cumulative fluid balance between inclusion and H72 of inclusion. Randomization will be generated using random block sizes and stratified based on fluid overload status at inclusion. The main outcome will be analyzed in the modified intention-to-treat population, defined as all alive patients at H72 of inclusion, based on their initial allocation group. DISCUSSION: We present in the present protocol all study procedures in regard to the achievement of the GO NEUTRAL trial, to prevent biased analysis of trial outcomes and improve the transparency of the trial result report. Enrollment of patients in the GO NEUTRAL trial has started on June 31, 2021, and is ongoing. TRIAL REGISTRATION: ClinicalTrials.gov NCT04801784. Registered on March 12, 2021, before the start of inclusion.


Subject(s)
COVID-19 , Continuous Renal Replacement Therapy , Hemodynamic Monitoring , Water-Electrolyte Imbalance , Adult , Critical Illness , Humans , Lactates , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2 , Standard of Care , Water-Electrolyte Balance
4.
Crit Care Med ; 50(11): 1555-1565, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2018223

ABSTRACT

OBJECTIVES: The aim of the current study was to investigate the level of cardiorespiratory fitness and neuromuscular function of ICU survivors after COVID-19 and to examine whether these outcomes are related to ICU stay/mechanical ventilation duration. DESIGN: Prospective nonrandomized study. SETTING: Patients hospitalized in ICU for COVID-19 infection. PATIENTS: Sixty patients hospitalized in ICU (mean duration: 31.9 ± 18.2 d) were recruited 4-8 weeks post discharge from ICU. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Patients visited the laboratory on two separate occasions. The first visit was dedicated to quality of life questionnaire, cardiopulmonary exercise testing, whereas measurements of the knee extensors neuromuscular function were performed in the second visit. Maximal oxygen uptake (V o2 max) was 18.3 ± 4.5 mL·min -1 ·kg -1 , representing 49% ± 12% of predicted value, and was significantly correlated with ICU stay/mechanical ventilation (MV) duration ( R = -0.337 to -0.446; p < 0.01 to 0.001), as were maximal voluntary contraction and electrically evoked peak twitch. V o2 max (either predicted or in mL· min -1 ·kg -1 ) was also significantly correlated with key indices of pulmonary function such as predicted forced vital capacity or predicted forced expiratory volume in 1 second ( R = 0.430-0.465; p ≤ 0.001) and neuromuscular function. Both cardiorespiratory fitness and neuromuscular function were correlated with self-reported physical functioning and general health status. CONCLUSIONS: V o2 max was on average only slightly above the 18 mL·min -1 ·kg -1 , that is, the cut-off value known to induce difficulty in performing daily tasks. Overall, although low physical capacities at admission in ICU COVID-19 patients cannot be ruled out to explain the association between V o2 max or neuromuscular function and ICU stay/MV duration, altered cardiorespiratory fitness and neuromuscular function observed in the present study may not be specific to COVID-19 disease but seem applicable to all ICU/MV patients of similar duration.


Subject(s)
COVID-19 , Cardiorespiratory Fitness , Aftercare , COVID-19/therapy , Humans , Intensive Care Units , Oxygen , Patient Discharge , Prospective Studies , Quality of Life , Respiration, Artificial
5.
Intensive Care Med ; 48(8): 995-1008, 2022 08.
Article in English | MEDLINE | ID: covidwho-1995565

ABSTRACT

In patients with the acute respiratory distress syndrome (ARDS), lung imaging is a fundamental tool in the study of the morphological and mechanistic features of the lungs. Chest computed tomography studies led to major advances in the understanding of ARDS physiology. They allowed the in vivo study of the syndrome's lung features in relation with its impact on respiratory physiology and physiology, but also explored the lungs' response to mechanical ventilation, be it alveolar recruitment or ventilator-induced lung injuries. Coupled with positron emission tomography, morphological findings were put in relation with ventilation, perfusion or acute lung inflammation. Lung imaging has always been central in the care of patients with ARDS, with modern point-of-care tools such as electrical impedance tomography or lung ultrasounds guiding clinical reasoning beyond macro-respiratory mechanics. Finally, artificial intelligence and machine learning now assist imaging post-processing software, which allows real-time analysis of quantitative parameters that describe the syndrome's complexity. This narrative review aims to draw a didactic and comprehensive picture of how modern imaging techniques improved our understanding of the syndrome, and have the potential to help the clinician guide ventilatory treatment and refine patient prognostication.


Subject(s)
Respiratory Distress Syndrome , Ventilator-Induced Lung Injury , Artificial Intelligence , Humans , Lung , Respiration, Artificial/methods , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/therapy , Tomography, X-Ray Computed , Ventilator-Induced Lung Injury/diagnostic imaging
6.
Turk J Anaesthesiol Reanim ; 50(Supp1): S57-S61, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1911957

ABSTRACT

OBJECTIVE: Admission in the intensive care unit of the old patient with coronavirus disease 19 raises an ethical question concerning the scarce resources and their short-term mortality. METHODS: Patients aged over 60 from 7 different intensive care units admitted between March 1, 2020 and May 6, 2020, with a diagnosis of coronavirus disease 19 were included in the cohort. Twenty variables were collected during the admission, such as age, severity (Simplified Acute Physiology Score [SAPS] II), several data on physiological status before intensive care unit comorbidities, evaluation of autonomy, frailty, and biological variables. The objective was to model the 30-day mortality with relevant variables, compute their odds ratio associated with their 95% CI, and produce a nomogram to easily estimate and communicate the 30-day mortality. The performance of the model was estimated with the area under the receiving operating curve. RESULTS: We included 231 patients, among them 60 (26.0%) patients have died on the 30th day. The relevant variables selected to explain the 30-day mortality were Instrumental Activities of Daily Living (IADL) score (0.82 [0.71-0.94]), age 1.12 (1.07-1.18), SAPS II 1.05 (1.02-1.08), and dementia 6.22 (1.00-38.58). A nomogram was computed to visually represent the final model. Area under the receiving operating curve was at 0.833 (0.776-0.889). CONCLUSIONS: Age, autonomy, dementia, and severity at admission were important predictive variables for the 30-day mortality status, and the nomogram could help the physician in the decision-making process and the communication with the family.

7.
Front Med (Lausanne) ; 9: 883950, 2022.
Article in English | MEDLINE | ID: covidwho-1872087

ABSTRACT

Background: The current standard of care during severe acute respiratory distress syndrome (ARDS) is based on low tidal volume (VT) ventilation, at 6 mL/kg of predicted body weight. The time-controlled adaptive ventilation (TCAV) is an alternative strategy, based on specific settings of the airway pressure release ventilation (APRV) mode. Briefly, TCAV reduces lung injury, including: (1) an improvement in alveolar recruitment and homogeneity; (2) reduction in alveolar and alveolar duct micro-strain and stress-risers. TCAV can result in higher intra-thoracic pressures and thus impair hemodynamics resulting from heart-lung interactions. The objective of our study was to compare hemodynamics between TCAV and conventional protective ventilation in a porcine ARDS model. Methods: In 10 pigs (63-73 kg), lung injury was induced by repeated bronchial saline lavages followed by 2 h of injurious ventilation. The animals were then randomized into two groups: (1) Conventional protective ventilation with a VT of 6 mL/kg and PEEP adjusted to a plateau pressure set between 28 and 30 cmH2O; (2) TCAV group with P-high set between 27 and 29 cmH2O, P-low at 0 cmH2O, T-low adjusted to terminate at 75% of the expiratory flow peak, and T-high at 3-4 s, with I:E > 6:1. Results: Both lung elastance and PaO2:FiO2 were consistent with severe ARDS after 2 h of injurious mechanical ventilation. There was no significant difference in systemic arterial blood pressure, pulmonary blood pressure or cardiac output between Conventional protective ventilation and TCAV. Levels of total PEEP were significantly higher in the TCAV group (p < 0.05). Driving pressure and lung elastance were significantly lower in the TCAV group (p < 0.05). Conclusion: No hemodynamic adverse events were observed in the TCAV group compared as to the standard protective ventilation group in this swine ARDS model, and TCAV appeared to be beneficial to the respiratory system.

8.
Aging Dis ; 13(2): 614-623, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1856376

ABSTRACT

The SARS-COV2 pandemic induces tensions on health systems and ethical dilemmas. Practitioners need help tools to define patients not candidate for ICU admission. A multicentre observational study was performed to evaluate the impact of age and geriatric parameters on 30-day mortality in patients aged ≥60 years of age. Patients or next of kin were asked to answer a phone questionnaire assessing geriatric covariates 1 month before ICU admission. Among 290 screened patients, 231 were included between March 7 and May 7, 2020. In univariate, factors associated with lower 30-day survival were: age (per 10 years increase; OR 3.43, [95%CI: 2.13-5.53]), ≥3 CIRS-G grade ≥2 comorbidities (OR 2.49 [95%CI: 1.36-4.56]), impaired ADL, (OR 4.86 [95%CI: 2.44-9.72]), impaired IADL8 (OR 6.33 [95%CI: 3.31-12.10], p<0.001), frailty according to the Fried score (OR 4.33 [95%CI: 2.03-9.24]) or the CFS ≥5 (OR 3.79 [95%CI: 1.76-8.15]), 6-month fall history (OR 3.46 [95%CI: 1.58-7.63]). The final multivariate model included age (per 10 years increase; 2.94 [95%CI:1.78-5.04], p<0.001) and impaired IADL8 (OR 5.69 [95%CI: 2.90-11.47], p<0.001)). Considered as continuous variables, the model led to an AUC of 0.78 [95% CI: 0.72, 0.85]. Age and IADL8 provide independent prognostic factors for 30-day mortality in the considered population. Considering a risk of death exceeding 80% (82.6% [95%CI: 61.2% - 95.0%]), patients aged over 80 years with at least 1 IADL impairment appear as poor candidates for ICU admission.

9.
Annals of Intensive Care ; 12(1), 2022.
Article in English | ProQuest Central | ID: covidwho-1837129

ABSTRACT

BackgroundLymphopenia is a hallmark of severe coronavirus disease 19 (COVID-19). Similar alterations have been described in bacterial sepsis and therapeutic strategies targeting T cell function such as recombinant human interleukin 7 (rhIL-7) have been proposed in this clinical context. As COVID-19 is a viral sepsis, the objectives of this study were to characterize T lymphocyte response over time in severe COVID-19 patients and to assess the effect of ex vivo administration of rhIL-7.ResultsPeripheral blood mononuclear cells from COVID-19 patients hospitalized in intensive care unit (ICU) were collected at admission and after 20 days. Transcriptomic profile was evaluated through NanoString technology. Inhibitory immune checkpoints expressions were determined by flow cytometry. T lymphocyte proliferation and IFN-γ production were evaluated after ex vivo stimulation in the presence or not of rhIL-7. COVID-19 ICU patients were markedly lymphopenic at admission. Mononuclear cells presented with inhibited transcriptomic profile prevalently with impaired T cell activation pathways. CD4 + and CD8 + T cells presented with over-expression of co-inhibitory molecules PD-1, PD-L1, CTLA-4 and TIM-3. CD4 + and CD8 + T cell proliferation and IFN-γ production were markedly altered in samples collected at ICU admission. These alterations, characteristic of a T cell exhaustion state, were more pronounced at ICU admission and alleviated over time. Treatment with rhIL-7 ex vivo significantly improved both T cell proliferation and IFN-γ production in cells from COVID-19 patients.ConclusionsSevere COVID-19 patients present with features of profound T cell exhaustion upon ICU admission which can be reversed ex vivo by rhIL-7. These results reinforce our understanding of severe COVID-19 pathophysiology and opens novel therapeutic avenues to treat such critically ill patients based of immunomodulation approaches. Defining the appropriate timing for initiating such immune-adjuvant therapy in clinical setting and the pertinent markers for a careful selection of patients are now warranted to confirm the ex vivo results described so far.Trial registration ClinicalTrials.gov identifier: NCT04392401 Registered 18 May 2020, http:// clinicaltrials.gov/ct2/show/NCT04392401.

10.
Crit Care ; 26(1): 94, 2022 04 04.
Article in English | MEDLINE | ID: covidwho-1775327

ABSTRACT

OBJECTIVE: To compare old patients hospitalized in ICU for respiratory distress due to COVID-19 with old patients hospitalized in ICU for a non-COVID-19-related reason in terms of autonomy and quality of life. DESIGN: Comparison of two prospective multi-centric studies. SETTING: This study was based on two prospective multi-centric studies, the Senior-COVID-Rea cohort (COVID-19-diagnosed ICU-admitted patients aged over 60) and the FRAGIREA cohort (ICU-admitted patients aged over 70). PATIENTS: We included herein the patients from both cohorts who had been evaluated at day 180 after admission (ADL score and quality of life). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 93 COVID-19 patients and 185 control-ICU patients were included. Both groups were not balanced on age, body mass index, mechanical ventilation, length of ICU stay, and ADL and SAPS II scores. We modeled with ordered logistic regression the influence of COVID-19 on the quality of life and the ADL score. After adjustment on these factors, we observed COVID-19 patients were less likely to have a loss of usual activities (aOR [95% CI] 0.47 [0.23; 0.94]), a loss of mobility (aOR [95% CI] 0.30 [0.14; 0.63]), and a loss of ADL score (aOR [95% CI] 0.30 [0.14; 0.63]). On day 180, 52 (56%) COVID-19 patients presented signs of dyspnea, 37 (40%) still used analgesics, 17 (18%) used anxiolytics, and 14 (13%) used antidepressant. CONCLUSIONS: COVID-19-related ICU stay was not associated with a lower quality of life or lower autonomy compared to non-COVID-19-related ICU stay.


Subject(s)
COVID-19 , Quality of Life , Aftercare , Aged , Critical Care , Humans , Intensive Care Units , Outcome Assessment, Health Care , Patient Discharge , Prospective Studies
11.
Trials ; 22(1): 692, 2021 Oct 11.
Article in English | MEDLINE | ID: covidwho-1463262

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe complication of COVID-19 pneumonia, with a mortality rate amounting to 34-50% in moderate and severe ARDS, and is associated with prolonged duration of invasive mechanical ventilation. Such as in non-COVID ARDS, harmful mechanical ventilation settings might be associated with worse outcomes. Reducing the tidal volume down to 4 mL kg-1 of predicted body weight (PBW) to provide ultra-low tidal volume ventilation (ULTV) is an appealing technique to minimize ventilator-inducted lung injury. Furthermore, in the context of a worldwide pandemic, it does not require any additional material and consumables and may be applied in low- to middle-income countries. We hypothesized that ULTV without extracorporeal circulation is a credible option to reduce COVID-19-related ARDS mortality and duration of mechanical ventilation. METHODS: The VT4COVID study is a randomized, multi-centric prospective open-labeled, controlled superiority trial. Adult patients admitted in the intensive care unit with COVID-19-related mild to severe ARDS defined by a PaO2/FiO2 ratio ≤ 150 mmHg under invasive mechanical ventilation for less than 48 h, and consent to participate to the study will be eligible. Patients will be randomized into two balanced parallels groups, at a 1:1 ratio. The control group will be ventilated with protective ventilation settings (tidal volume 6 mL kg-1 PBW), and the intervention group will be ventilated with ULTV (tidal volume 4 mL kg-1 PBW). The primary outcome is a composite score based on 90-day all-cause mortality as a prioritized criterion and the number of ventilator-free days at day 60 after inclusion. The randomization list will be stratified by site of recruitment and generated using random blocks of sizes 4 and 6. Data will be analyzed using intention-to-treat principles. DISCUSSION: The purpose of this manuscript is to provide primary publication of study protocol to prevent selective reporting of outcomes, data-driven analysis, and to increase transparency. Enrollment of patients in the study is ongoing. TRIAL REGISTRATION: ClinicalTrials.gov NCT04349618 . Registered on April 16, 2020.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Adult , Extracorporeal Circulation , Humans , Prospective Studies , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , SARS-CoV-2
12.
BMJ Open ; 11(7): e044449, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1299231

ABSTRACT

INTRODUCTION: With the spread of COVID-19 epidemic, health plans must be adapted continuously. There is an urgent need to define the best care courses of patients with COVID-19, especially in intensive care units (ICUs), according to their individualised benefit/risk ratio. Since older age is associated with poorer short-term and long-term outcomes, prediction models are needed, that may assist clinicians in their ICU admission decision. Senior-COVID-Rea was designed to evaluate, in patients over 60 years old admitted in ICU for severe COVID-19 disease, the impact of age and geriatric and paraclinical parameters on their mortality 30 days after ICU admission. METHODS AND ANALYSIS: This is a multicentre survey protocol to be conducted in seven hospitals of the Auvergne-Rhône-Alpes region, France. All patients over 60 years old admitted in ICU for severe COVID-19 infection (or their legally acceptable representative) will be proposed to enter the study and to fill in a questionnaire regarding their functional and nutritional parameters 1 month before COVID-19 infection. Paraclinical parameters at ICU admission will be collected: lymphocytes and neutrophils counts, high-fluorescent lymphoid cells and immature granulocytes percentages (Sysmex data), D-dimers, C-reactive protein, lactate dehydrogenase (LDH), creatinine, CT scan for lung extension rate as well as clinical resuscitation scores, and the delay between the first signs of infection and ICU admission. The primary outcome will be the overall survival at day 30 post-ICU admission. The analysis of factors predicting mortality at day 30 will be carried out using univariate and multivariate logistic regressions. Multivariate logistic regression will consider up to 15 factors.The ambition of this trial, which takes into account the different approaches of geriatric vulnerability, is to define the respective abilities of different operational criteria of frailty to predict patients' outcomes. ETHICS AND DISSEMINATION: The study protocol was ethically approved. The results of the primary and secondary objectives will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04422340.


Subject(s)
COVID-19 , Aged , France/epidemiology , Humans , Intensive Care Units , Middle Aged , Multicenter Studies as Topic , Prohibitins , Risk Factors , SARS-CoV-2 , Surveys and Questionnaires
13.
Ann Intensive Care ; 10(1): 129, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-810354

ABSTRACT

BACKGROUND: Data on respiratory mechanics of COVID-19 ARDS patients are scarce. Respiratory mechanics and response to positive expiratory pressure (PEEP) may be different in obese and non-obese patients. METHODS: We investigated esophageal pressure allowing determination of transpulmonary pressures (PL ) and elastances (EL) during a decremental PEEP trial from 20 to 6 cm H2O in a cohort of COVID-19 ARDS patients. RESULTS: Fifteen patients were investigated, 8 obese and 7 non-obese patients. PEEP ≥ 16 cm H2O for obese patients and PEEP ≥10 cm H2O for non-obese patients were necessary to obtain positive expiratory PL. Change of PEEP did not alter significantly ΔPL or elastances in obese patients. However, in non-obese patients lung EL  and ΔPL increased significantly with PEEP increase. Chest wall EL was not affected by PEEP variations in both groups.

14.
J Crit Care ; 60: 169-176, 2020 12.
Article in English | MEDLINE | ID: covidwho-710098

ABSTRACT

PURPOSE: The aim of this study was to assess whether the computed tomography (CT) features of COVID-19 (COVID+) ARDS differ from those of non-COVID-19 (COVID-) ARDS patients. MATERIALS AND METHODS: The study is a single-center prospective observational study performed on adults with ARDS onset ≤72 h and a PaO2/FiO2 ≤ 200 mmHg. CT scans were acquired at PEEP set using a PEEP-FiO2 table with VT adjusted to 6 ml/kg predicted body weight. RESULTS: 22 patients were included, of whom 13 presented with COVID-19 ARDS. Lung weight was significantly higher in COVID- patients, but all COVID+ patients presented supranormal lung weight values. Noninflated lung tissue was significantly higher in COVID- patients (36 ± 14% vs. 26 ± 15% of total lung weight at end-expiration, p < 0.01). Tidal recruitment was significantly higher in COVID- patients (20 ± 12 vs. 9 ± 11% of VT, p < 0.05). Lung density histograms of 5 COVID+ patients with high elastance (type H) were similar to those of COVID- patients, while those of the 8 COVID+ patients with normal elastance (type L) displayed higher aerated lung fraction.


Subject(s)
COVID-19/diagnostic imaging , Image Processing, Computer-Assisted/methods , Respiratory Distress Syndrome/diagnostic imaging , Tomography, X-Ray Computed , Adult , Aged , Case-Control Studies , Female , Humans , Lung , Lung Compliance , Male , Middle Aged , Positive-Pressure Respiration , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL